Person re-identification (ReID) aims at searching the same identity person among images captured by various cameras. Unsupervised person ReID attracts a lot of attention recently, due to it works without intensive manual annotation and thus shows great potential of adapting to new conditions. Representation learning plays a critical role in unsupervised person ReID. In this work, we propose a novel selective contrastive learning framework for unsupervised feature learning. Specifically, different from traditional contrastive learning strategies, we propose to use multiple positives and adaptively sampled negatives for defining the contrastive loss, enabling to learn a feature embedding model with stronger identity discriminative representation. Moreover, we propose to jointly leverage global and local features to construct three dynamic dictionaries, among which the global and local memory banks are used for pairwise similarity computation and the mixture memory bank are used for contrastive loss definition. Experimental results demonstrate the superiority of our method in unsupervised person ReID compared with the state-of-the-arts.
翻译:个人再识别(ReID)的目的是在各种相机拍摄的图像中寻找同一身份(ReID) 。 无人监督的人再识别(ReID)最近引起许多关注,因为其工作没有经过密集的人工批注,因此具有适应新条件的巨大潜力。 代表性学习在无人监督的人再识别(ReID)中发挥着关键作用。 在这项工作中,我们提议为未经监督的特征学习建立一个新的选择性对比性学习框架。 具体地说,与传统的对比性学习战略不同,我们提议使用多个正数和适应性抽样的负面来界定对比性损失,从而能够学习一个具有更强烈身份歧视代表性的嵌入模型。 此外,我们提议共同利用全球和地方特征来构建三个动态词典,其中全球和地方记忆库用于对称相似的计算,混合记忆库用于对比性损失定义。实验结果表明,我们的方法优于不受控制的人再识别(ReID)与状态艺术相比具有优势。