Deep learning has yielded extraordinary results in vision and natural language processing, but this achievement comes at a cost. Most models require enormous resources during training, both in terms of computation and in human labeling effort. We show that we can identify informative and diverse subsets of data that lead to deep learning models with similar performance as the ones trained with the original dataset. Prior methods have exploited diversity and uncertainty in submodular objective functions for choosing subsets. In addition to these measures, we show that balancing constraints on predicted class labels and decision boundaries are beneficial. We propose a novel formulation of these constraints using matroids, an algebraic structure that generalizes linear independence in vector spaces, and present an efficient greedy algorithm with constant approximation guarantees. We outperform competing baselines on standard classification datasets such as CIFAR-10, CIFAR-100, ImageNet, as well as long-tailed datasets such as CIFAR-100-LT.


翻译:深层次的学习在视觉和自然语言处理方面产生了不同寻常的结果,但这一成绩是有代价的。大多数模型在培训期间都需要大量资源,包括计算和人类标签工作。我们表明,我们可以确定信息丰富和多样的数据子集,从而导致深层次的学习模型,其性能与接受原始数据集培训的模型相似。以前的方法利用亚模式目标功能的多样性和不确定性来选择子集。除了这些措施外,我们还表明平衡预测类标签和决定界限的限制是有好处的。我们提议用类固醇这一代谢结构对这些限制因素进行新颖的表述,这种代谢结构将矢量空间的线性独立概括化,并提出一种高效的贪婪算法,并不断提供近距离保证。我们在标准分类数据集(如CIFAR-10、CIFAR-100、图像网)和长尾数据集(如CIFAR-100-LT)上建立了相互竞争的基线。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
101+阅读 · 2020年3月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
8+阅读 · 2021年5月21日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Nocaps: novel object captioning at scale
Arxiv
6+阅读 · 2018年12月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员