There are several challenges associated with inverse problems in which we seek to reconstruct a piecewise constant field, and which we model using multiple level sets. Adopting a Bayesian viewpoint, we impose prior distributions on both the level set functions that determine the piecewise constant regions as well as the parameters that determine their magnitudes. We develop a Gauss-Newton approach with a backtracking line search to efficiently compute the maximum a priori (MAP) estimate as a solution to the inverse problem. We use the Gauss-Newton Laplace approximation to construct a Gaussian approximation of the posterior distribution and use preconditioned Krylov subspace methods to sample from the resulting approximation. To visualize the uncertainty associated with the parameter reconstructions we compute the approximate posterior variance using a matrix-free Monte Carlo diagonal estimator, which we develop in this paper. We will demonstrate the benefits of our approach and solvers on synthetic test problems (photoacoustic and hydraulic tomography, respectively a linear and nonlinear inverse problem) as well as an application to X-ray imaging with real data.
翻译:与反向问题相关的若干挑战, 我们试图重建一个小块常态字段, 并且我们用多级集来模拟。 采用巴伊西亚观点, 我们将先前的分布强加在决定小片常态区域以及决定其大小参数的级别设定函数上。 我们开发了高斯- 牛顿方法, 并用回溯跟踪线搜索方法, 以有效计算前置( MAP) 的最大估计值, 以此解决反向问题 。 我们用高斯- 纽顿 Laplace 近似来构建后端分布的高斯近似值, 并使用有先决条件的 Krylov 子空间方法从结果的近似中取样。 要将参数重建的不确定性进行视觉化, 我们用本文中开发的无矩阵的 Monte Carlo digonagraphal 估计仪来计算近似地差 。 我们将展示我们的方法和解算器在合成测试问题( 光学和液压图, 分别为线性和非线性反向问题) 上的好处, 以及用真实数据的X射线成成X 。