Recent years have witnessed a growing number of researches on community characterization. In contrast to the large body of researches on the categorical measures (rise or decline) for evaluating the community development, we propose to estimate the community development strength (to which degree the rise or decline is). More specifically, given already known categorical information of community development, we are attempting to quantify the community development strength, which is of great interest. Motivated by the increasing availability of large-scale data on the network between entities among communities, we investigate how to score the the community's development strength. We formally define our task as prospecting community development strength from categorization based on multi-relational network information and identify two challenges as follows: (1) limited guidance for integrating entity multi-relational network in quantifying the community development strength; (2) the existence of selection effect that the community development strength has on network formation. Aiming at these challenges, we start by a hybrid of discriminative and generative approaches on multi-relational network-based community development strength quantification. Then a network generation process is exploited to debias the selection process. In the end, we empirically evaluate the proposed model by applying it to quantify enterprise business development strength. Experimental results demonstrate the effectiveness of the proposed method.


翻译:近年来,关于社区特征特征的研究越来越多。与关于评估社区发展的绝对措施(上升或下降)的大量研究相比,我们提议估计社区发展的力度(上升或下降的程度)。更具体地说,鉴于已经知道的社区发展的绝对信息,我们正试图量化社区发展的实力,这引起了极大的兴趣。我们受到社区之间实体网络中大规模数据越来越多的影响,我们调查如何衡量社区发展的实力。我们正式确定我们的任务是从基于多关系网络信息的分类中挖掘社区发展的实力,并确定以下两个挑战:(1) 整合实体多关系网络的有限指导,以量化社区发展实力;(2) 社区发展实力对网络形成具有的选择性影响。我们从这些挑战出发,首先采用基于多种关系网络的基于社区发展实力的区别和分化方法的混合方法。然后,利用网络生成过程来降低选择过程的偏见。最后,我们实证地评估拟议的模式,通过应用其量化企业发展实力的实验性方法,以量化企业发展实力。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
68+阅读 · 2022年9月7日
Arxiv
13+阅读 · 2022年8月16日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员