We present a gradually typed language, GrEff, with effects and handlers that supports migration from unchecked to checked effect typing. This serves as a simple model of the integration of an effect typing discipline with an existing effectful typed language that does not track fine-grained effect information. Our language supports a simple module system to model the programming model of gradual migration from unchecked to checked effect typing in the style of Typed Racket. The surface language GrEff is given semantics by elaboration to a core language Core GrEff. We equip Core GrEff with an inequational theory for reasoning about the semantic error ordering and desired program equivalences for programming with effects and handlers. We derive an operational semantics for the language from the equations provable in the theory. We then show that the theory is sound by constructing an operational logical relations model to prove the graduality theorem. This extends prior work on embedding-projection pair models of gradual typing to handle effect typing and subtyping.


翻译:逐步类型化的效应处理器 我们提出了一种逐步类型化的语言GrEff,带有效应和处理器,支持从未经检查的效应类型逐渐转换为已检查的效应类型。这是一个简单的模型,用于将效应类型学科与不跟踪细粒度效应信息的现有效应类型语言集成起来。我们的语言支持一个简单的模块系统,以Typed Racket的迁移方式来模拟逐步从未经检查的效应类型到已检查的效应类型。表面语言GrEff通过精确定义为核心语言Core GrEff提供语义。我们为对效应和处理器编程的所需程序等价的语义错误排序理论提供了一个不等式理论。我们从可以证明该理论的等式中导出了语言的操作语义。然后,我们通过构建一个操作逻辑关系模型来证明该理论是正确的,这扩展了先前的嵌入和投影双模型,用于处理效应类型和子类型。

0
下载
关闭预览

相关内容

Nat Methods|ColabFold:让所有人都能进行蛋白质折叠
专知会员服务
7+阅读 · 2022年6月27日
专知会员服务
26+阅读 · 2021年4月2日
Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
68+阅读 · 2020年11月4日
专知会员服务
40+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员