项目名称: 椭圆曲线和代数K-理论相关问题的研究
项目编号: No.11471154
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 纪庆忠
作者单位: 南京大学
项目金额: 60万元
中文摘要: 代数K-理论为研究算术代数几何,特别是椭圆曲线提供了新思路新方法.本项目利用椭圆曲线的K-理论和Mahler测度之间的关系来研究椭圆曲线的算术性质,椭圆双对数与L-函数之间的关系(Zagier猜想)以及Beilinson猜想.利用带复乘的椭圆曲线的理论来研究二次多项式表素数问题. 发展我们已有的独创方法研究数域的代数整数环的K群与高阶Regulator,L函数,Zeta函数,Iwasawa不变量方面的关系.
中文关键词: 椭圆曲线;L-函数;代数K-理论;Mahler测度;有限域
英文摘要: Algebraic K-theory provide new ideas and methods to study arithmetic algebraic geometry, in particular elliptic curves.In this poject, we shall study the arithmetic properties of elliptic curves,the relation between elliptic dilogarithm and L-functions of elliptic curves (Zagier's conjecture)and Beilinson's conjecture by the relationship between Mahler measure and K-theory of elliptic curve. By the theory of CM elliptic curve ,we will study the problem of primes captured by quadratic polynomials. Developing of our original methods, we further study the relationship among K-groups of the ring of algebraic integers, higher Regulators, L functions, Zeta functions and Iwasawa invariants of number fields.
英文关键词: elliptic curve;L-function;algebraic K-theory;Mahler measure;finite field