In this paper, we propose a novel adaptive finite element method for an elliptic equation with line Dirac delta functions as a source term. We first study the well-posedness and global regularity of the solution in the whole domain. Instead of regularizing the singular source term and using the classical residual-based a posteriori error estimator, we propose a novel a posteriori estimator based on an equivalent transmission problem with zero source term and nonzero flux jumps on line fractures. The transmission problem is defined in the same domain as the original problem excluding on line fractures, and the solution is therefore shown to be more regular. The estimator relies on meshes conforming to the line fractures and its edge jump residual essentially uses the flux jumps of the transmission problem on line fractures. The error estimator is proven to be both reliable and efficient, an adaptive finite element algorithm is proposed based on the error estimator and the bisection refinement method. Numerical tests show that quasi-optimal convergence rates are achieved even for high order approximations and the adaptive meshes are only locally refined at singular points.
翻译:在本文中, 我们提出一个新的对椭圆方程式的适应性限定元素方法, 其值为 Dirac delta 线函数为源词 。 我们首先研究整个域内解决方案的正确性和全球规律性 。 我们不使用单一源词的常规化, 并使用传统残留的后传误差估测器, 我们提议了一个基于线骨折无源值和非零通量跳动的等效传输问题的子数估计仪。 传输问题与原始问题( 线骨折除外) 在同一领域定义, 并因此显示解决办法更为常规化 。 估计值主要依靠符合线骨折及其边缘跳动残留的胶片。 估计值主要使用线骨折传输问题的通量跳动。 错误估测算器既可靠又有效, 也根据误测仪和两极精细法提出了适应性限元素算法。 数值测试显示, 即使在高排序近点上, 适应性中间点也只在当地精细化。