We consider statistical linear inverse problems in separable Hilbert spaces and filter-based reconstruction methods of the form $\hat f_\alpha = q_\alpha \left(T^*T\right)T^*Y$, where $Y$ is the available data, $T$ the forward operator, $\left(q_\alpha\right)_{\alpha \in \mathcal A}$ an ordered filter, and $\alpha > 0$ a regularization parameter. Whenever such a method is used in practice, $\alpha$ has to be chosen appropriately. Typically, the aim is to find or at least approximate the best possible $\alpha$ in the sense that mean squared error (MSE) $\mathbb E [\Vert \hat f_\alpha - f^\dagger\Vert^2]$ w.r.t.~the true solution $f^\dagger$ is minimized. In this paper, we introduce the Sharp Optimal Lepski\u{\i}-Inspired Tuning (SOLIT) method, which yields an a posteriori parameter choice rule ensuring adaptive minimax rates of convergence. It depends only on $Y$ and the noise level $\sigma$ as well as the operator $T$ and the filter $\left(q_\alpha\right)_{\alpha \in \mathcal A}$ and does not require any problem-dependent tuning of further parameters. We prove an oracle inequality for the corresponding MSE in a general setting and derive the rates of convergence in different scenarios. By a careful analysis we show that no other a posteriori parameter choice rule can yield a better performance in terms of the convergence rate of the MSE. In particular, our results reveal that the typical understanding of Lepskiii-type methods in inverse problems leading to a loss of a log factor is wrong. In addition, the empirical performance of SOLIT is examined in simulations.
翻译:本文考虑可分离的 Hilbert 空间中的统计线性反问题以及形如 $\hat f_\alpha = q_\alpha \left(T^*T\right)T^*Y$ 的基于滤波的重建方法,其中 $Y$ 是可用数据,$T$ 是正算符,$\left(q_\alpha\right)_{\alpha \in \mathcal A}$ 是有序滤波器,$\alpha>0$ 是正则化参数。在实际应用中,需要适当选择 $\alpha$。通常,目的是找到或至少逼近以均方误差 (MSE) $\mathbb E [\Vert \hat f_\alpha - f^\dagger\Vert^2]$ 表示的最佳 $\alpha$,其中 $f^\dagger$ 是真实解。在本文中,我们引入了尖锐最优 Lepski-Inspired 调整(SOLIT)方法,它提供了一种后验参数选择规则,保证了自适应极限收敛速率。它仅取决于 $Y$ 和噪声水平 $\sigma$,以及算子 $T$ 和滤波器 $\left(q_\alpha\right)_{\alpha \in \mathcal A}$,且不需要任何问题相关的进一步参数调整。我们在一般情况下证明了相应的 MSE 的 oracle 不等式,并在不同场景下导出了收敛速率。通过仔细的分析,我们表明没有其他后验参数选择规则可以更好地表现出 MSE 的收敛率,特别是 Lepskiii 类方法在反问题中导致对数因子损失的典型理解是错误的。此外,我们在模拟中检查了 SOLIT 的实际性能。