We study the problem of approximating edit distance in sublinear time. This is formalized as a promise problem $(k,k^c)$-Gap Edit Distance, where the input is a pair of strings $X,Y$ and parameters $k,c>1$, and the goal is to return YES if $ED(X,Y)\leq k$ and NO if $ED(X,Y)> k^c$. Recent years have witnessed significant interest in designing sublinear-time algorithms for Gap Edit Distance. We resolve the non-adaptive query complexity of Gap Edit Distance, improving over several previous results. Specifically, we design a non-adaptive algorithm with query complexity $\tilde{O}(\frac{n}{k^{c-0.5}})$, and further prove that this bound is optimal up to polylogarithmic factors. Our algorithm also achieves optimal time complexity $\tilde{O}(\frac{n}{k^{c-0.5}})$ whenever $c\geq 1.5$. For $1<c<1.5$, the running time of our algorithm is $\tilde{O}(\frac{n}{k^{2c-1}})$. For the restricted case of $k^c=\Omega(n)$, this matches a known result [Batu, Erg\"un, Kilian, Magen, Raskhodnikova, Rubinfeld, and Sami, STOC 2003], and in all other (nontrivial) cases, our running time is strictly better than all previous algorithms, including the adaptive ones.


翻译:我们研究的是亚线性时间中近似编辑距离的问题。 这被正式确定为一个承诺问题 $( k, k ⁇ c) $( k, k ⁇ c) $- Gap 编辑距离, 输入是一对字符串 $X, Y$和参数 $k, c>1$, 目标是返回是 $( X, Y)\leq k$, 如果$( X, Y) > k ⁇ c 美元 。 最近几年, 我们对于设计差距编辑距离的亚线性算法非常感兴趣。 我们解决了差距编辑距离的非适应性查询复杂性, 改进了以前的几项结果。 具体地说, 我们设计了一个非适应性算法, 查询复杂 $( X, Y) $( Y), (Y)\\ leq) k k, 我们的算法也达到了最理想的时间复杂性 $( ) (frac{n) =1.5$( gloe) 时间 。 对于1 < =1.5} (C < ruk_ ral_\ lax) 例来说, 我们的算算算算算 。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Measure Estimation in the Barycentric Coding Model
Arxiv
0+阅读 · 2022年1月28日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员