It has previously been shown that response transformations can be very effective in improving dimension reduction outcomes for a continuous response. The choice of transformation used can make a big difference in the visualization of the response versus the dimension reduced regressors. In this article, we provide an automated approach for choosing parameters of transformation functions to seek optimal results. A criterion based on an influence measure between dimension reduction spaces is utilized for choosing the optimal parameter value of the transformation. Since influence measures can be time-consuming for large data sets, two efficient criteria are also provided. Given that a different transformation may be suitable for each direction required to form the subspace, we also employ an iterative approach to choosing optimal parameter values. Several simulation studies and a real data example highlight the effectiveness of the proposed methods.


翻译:以前曾表明,反应变换可以非常有效地改善持续反应的减少维度结果。选择所用变换可以大大改变反应的可视化与递减递减器的减少维度。在本条中,我们提供了一种自动办法,用于选择变换功能参数的参数,以寻求最佳结果。基于尺寸变换空间之间影响度量的标准用于选择变换的最佳参数值。由于对大型数据集而言,影响措施可能耗时,因此提供了两个有效的标准。鉴于不同的变换可能适合形成子空间所需的每个方向,我们还采用迭代法选择最佳参数值。一些模拟研究和一个真实数据实例突出了拟议方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
39+阅读 · 2020年9月6日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员