Many scientific and economic applications involve the statistical learning of high-dimensional functional time series, where the number of functional variables is comparable to, or even greater than, the number of serially dependent functional observations. In this paper, we model observed functional time series, which are subject to errors in the sense that each functional datum arises as the sum of two uncorrelated components, one dynamic and one white noise. Motivated from the fact that the autocovariance function of observed functional time series automatically filters out the noise term, we propose a three-step procedure by first performing autocovariance-based dimension reduction, then formulating a novel autocovariance-based block regularized minimum distance estimation framework to produce block sparse estimates, and based on which obtaining the final functional sparse estimates. We investigate theoretical properties of the proposed estimators, and illustrate the proposed estimation procedure via three sparse high-dimensional functional time series models. We demonstrate via both simulated and real datasets that our proposed estimators significantly outperform the competitors.


翻译:许多科学和经济应用都涉及高维功能时间序列的统计学习,其中功能变量的数量可与连续依赖功能观测的数量相比或甚至大于此数。在本文件中,我们模拟观察到的功能时间序列,因为每个功能数据作为两个不相干的组成部分、一个动态和一个白色噪音的总和而产生,因此存在错误。我们从观测到的功能时间序列的自动变异功能函数自动过滤出噪音术语这一事实出发,提出三步程序,首先进行基于自动变异的尺寸缩小,然后制定一个新的基于自动变异的块常规最小距离估计框架,以产生零散估计数,并在此基础上获得最后功能稀少的估计数。我们通过三个分散的高维功能时间序列模型调查拟议估算程序的理论属性,并通过三个分散的高维功能序列模型来说明拟议的估计程序。我们通过模拟和真实的数据集来证明,我们拟议的估计方法大大优于竞争者。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
读书报告 | Deep Learning for Extreme Multi-label Text Classification
科技创新与创业
48+阅读 · 2018年1月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
读书报告 | Deep Learning for Extreme Multi-label Text Classification
科技创新与创业
48+阅读 · 2018年1月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员