We study approaches to robust model-based design of experiments in the context of maximum-likelihood estimation. These approaches provide robustification of model-based methodologies for the design of optimal experiments by accounting for the effect of the parametric uncertainty. We study the problem of robust optimal design of experiments in the framework of nonlinear least-squares parameter estimation using linearized confidence regions. We investigate several well-known robustification frameworks in this respect and propose a novel methodology based on multi-stage robust optimization. The proposed methodology aims at problems, where the experiments are designed sequentially with a possibility of re-estimation in-between the experiments. The multi-stage formalism aids in identifying experiments that are better conducted in the early phase of experimentation, where parameter knowledge is poor. We demonstrate the findings and effectiveness of the proposed methodology using four case studies of varying complexity.
翻译:我们研究在最大似差估计范围内以稳健模型为基础设计实验的方法,这些方法通过考虑到参数不确定性的影响,为设计最佳实验提供了有力的基于模型的方法;我们研究在非线性最低平方参数估计框架内利用线性信任区域进行稳健最佳设计实验的问题;我们调查了这方面的几个众所周知的稳健框架,并提出了以多阶段稳健优化为基础的新方法;拟议方法着眼于问题,即实验是按顺序设计,在试验之间有可能重新估计的;多阶段形式主义协助查明在参数知识贫乏的试验早期阶段进行得较好的实验;我们利用四个复杂程度不同的案例研究,展示拟议方法的调查结果和有效性。