Few-shot relation classification (RC) is one of the critical problems in machine learning. Current research merely focuses on the set-ups that both training and testing are from the same domain. However, in practice, this assumption is not always guaranteed. In this study, we present a novel model that takes into consideration the afore-mentioned cross-domain situation. Not like previous models, we only use the source domain data to train the prototypical networks and test the model on target domain data. A meta-based adversarial training framework (\textbf{MBATF}) is proposed to fine-tune the trained networks for adapting to data from the target domain. Empirical studies confirm the effectiveness of the proposed model.
翻译:几小片关系分类( RC) 是机器学习的关键问题之一。 目前的研究仅仅侧重于培训和测试都来自同一领域的设置。 但是, 实际上, 这个假设并非总能得到保证。 在这项研究中, 我们提出了一个考虑到上述跨领域情况的新模式。 不像以前的模型那样, 我们只使用源域数据来培训原型网络和测试目标域数据模型。 提议建立一个基于元的对抗性培训框架 (\ textbf{MBATF}) 来调整经过培训的网络, 以适应目标域的数据。 经验性研究证实了拟议模型的有效性 。