In robotics motion is often described from an external perspective, i.e., we give information on the obstacle motion in a mathematical manner with respect to a specific (often inertial) reference frame. In the current work, we propose to describe the robotic motion with respect to the robot itself. Similar to how we give instructions to each other (go straight, and then after multiple meters move left, and then a sharp turn right.), we give the instructions to a robot as a relative rotation. We first introduce an obstacle avoidance framework that allows avoiding star-shaped obstacles while trying to stay close to an initial (linear or nonlinear) dynamical system. The framework of the local rotation is extended to motion learning. Automated clustering defines regions of local stability, for which the precise dynamics are individually learned. The framework has been applied to the LASA-handwriting dataset and shows promising results.
翻译:在机器人运动中,通常从外部角度描述机器人运动,即,我们以数学方式提供有关特定(通常是惯性)参照框架的障碍运动的信息。在目前的工作中,我们提议描述机器人运动与机器人本身的关系。类似于我们如何相互给予指示(直走,然后在多米后向左移动,然后向右直转),我们作为相对旋转向机器人发出指示。我们首先引入一个避免障碍的框架,在试图接近初始(线性或非线性)动态系统的同时,避免恒星形障碍。本地轮用框架扩大到运动学习。自动组合界定了当地稳定区域,准确的动态是个别学习的。框架已应用于LASA手写数据集,并展示了有希望的结果。