Particle dynamics and multi-agent systems provide accurate dynamical models for studying and forecasting the behavior of complex interacting systems. They often take the form of a high-dimensional system of differential equations parameterized by an interaction kernel that models the underlying attractive or repulsive forces between agents. We consider the problem of constructing a data-based approximation of the interacting forces directly from noisy observations of the paths of the agents in time. The learned interaction kernels are then used to predict the agents behavior over a longer time interval. The approximation developed in this work uses a randomized feature algorithm and a sparse randomized feature approach. Sparsity-promoting regression provides a mechanism for pruning the randomly generated features which was observed to be beneficial when one has limited data, in particular, leading to less overfitting than other approaches. In addition, imposing sparsity reduces the kernel evaluation cost which significantly lowers the simulation cost for forecasting the multi-agent systems. Our method is applied to various examples, including first-order systems with homogeneous and heterogeneous interactions, second order homogeneous systems, and a new sheep swarming system.


翻译:粒子动态和多试剂系统为研究和预测复杂互动系统的行为提供了精确的动态模型。它们通常采取以互动内核为参数的多元方程高维系统的形式,以互动内核为参数,模拟各种物剂之间潜在的吸引力或令人厌恶的力量。我们考虑了直接从对物剂路径的噪音观测中建立基于数据的互动力量近似的问题。然后,利用学习的相互作用内核来预测物剂在较长的时期内的行为。在这项工作中开发的近似利用随机特性算法和稀有的随机特征方法。促进性回归为随机生成的特征的运行提供了一种机制,当一个人的数据有限时,特别是导致比其他方法更不适应时,观察到这种机制是有用的。此外,强制施压会降低内核评估成本,从而大大降低预测多种物剂系统的模拟成本。我们的方法被用于各种实例,包括具有同质和混杂相互作用的一级系统、第二顺序同质系统以及新的羊温系统。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月12日
Arxiv
0+阅读 · 2023年2月11日
Arxiv
0+阅读 · 2023年2月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员