Effective inclusion of physics-based knowledge into deep neural network models of dynamical systems can greatly improve data efficiency and generalization. Such a-priori knowledge might arise from physical principles (e.g., conservation laws) or from the system's design (e.g., the Jacobian matrix of a robot), even if large portions of the system dynamics remain unknown. We develop a framework to learn dynamics models from trajectory data while incorporating a-priori system knowledge as inductive bias. More specifically, the proposed framework uses physics-based side information to inform the structure of the neural network itself, and to place constraints on the values of the outputs and the internal states of the model. It represents the system's vector field as a composition of known and unknown functions, the latter of which are parametrized by neural networks. The physics-informed constraints are enforced via the augmented Lagrangian method during the model's training. We experimentally demonstrate the benefits of the proposed approach on a variety of dynamical systems -- including a benchmark suite of robotics environments featuring large state spaces, non-linear dynamics, external forces, contact forces, and control inputs. By exploiting a-priori system knowledge during training, the proposed approach learns to predict the system dynamics two orders of magnitude more accurately than a baseline approach that does not include prior knowledge, given the same training dataset.
翻译:将物理知识有效纳入动态系统的深神经网络模型,可以大大提高数据效率和总体化。这种优先知识可能来自物理原理(例如保护法)或系统设计(例如机器人的雅各布矩阵),即使系统动态的大部分内容仍然未知。我们开发了一个框架,从轨迹数据中学习动态模型,同时将优先系统知识作为诱导偏差纳入其中。更具体地说,拟议框架利用基于物理的侧面信息为神经网络本身的结构提供信息,并限制该模型的产出值和内部状态。这种优先知识可能来自物理原理(例如保护法)或系统的设计(例如机器人的雅各布矩阵),即使系统动态动态的很大一部分内容仍然未知。我们开发了一个框架,从轨迹中学习动态模型数据,同时将优先系统知识纳入其中。我们实验性地展示了拟议方法对各种动态系统的益处 -- 包括一个基准成套机器人环境的基准套件,该模型包括大型空间、非线性动态、外部力量、接触力、接触力以及模型的内部状态。它代表着该系统的矢量领域,作为已知和未知的功能的构成,后者是神经网络;在模型培训期间,通过扩大拉格方法进行更精确的预测测测测测测测测测。我们系统,而不是先测测测测测测测测测测测测测测测。我们系统。我们测测测测测测测测。我们测测测测测测测测测测测测测测测。