Face editing represents a popular research topic within the computer vision and image processing communities. While significant progress has been made recently in this area, existing solutions: (i) are still largely focused on low-resolution images, (ii) often generate editing results with visual artefacts, or (iii) lack fine-grained control and alter multiple (entangled) attributes at once, when trying to generate the desired facial semantics. In this paper, we aim to address these issues though a novel attribute editing approach called MaskFaceGAN that focuses on local attribute editing. The proposed approach is based on an optimization procedure that directly optimizes the latent code of a pre-trained (state-of-the-art) Generative Adversarial Network (i.e., StyleGAN2) with respect to several constraints that ensure: (i) preservation of relevant image content, (ii) generation of the targeted facial attributes, and (iii) spatially--selective treatment of local image areas. The constraints are enforced with the help of an (differentiable) attribute classifier and face parser that provide the necessary reference information for the optimization procedure. MaskFaceGAN is evaluated in extensive experiments on the CelebA-HQ, Helen and SiblingsDB-HQf datasets and in comparison with several state-of-the-art techniques from the literature, i.e., StarGAN, AttGAN, STGAN, and two versions of InterFaceGAN. Our experimental results show that the proposed approach is able to edit face images with respect to several local facial attributes with unprecedented image quality and at high-resolutions (1024x1024), while exhibiting considerably less problems with attribute entanglement than competing solutions. The source code is made freely available from: https://github.com/MartinPernus/MaskFaceGAN.


翻译:面部编辑在计算机视觉和图像处理社区中是一个流行的研究主题。 虽然最近在这一领域取得了显著进展, 但现有的解决方案有:(一) 仍然主要侧重于低分辨率图像, (二) 经常以视觉手工艺品生成编辑结果, 或 (三) 当试图生成所需的面部语义时, 缺乏精细的控制和同时改变多个( 缠绕的) 属性。 在本文中, 我们的目标是通过一种名为 Mask FaceGAN 的新属性编辑方法来解决这些问题, 重点是本地属性编辑。 拟议的方法基于一种优化程序, 直接优化预培训( 状态- 水平- 艺术) 的潜在代码;(二) 以视觉手动手动手动的图像编辑结果( 即StelegGAN2), 在确保:(一) 保存相关图像内容, (二) 生成有针对性的面部面部特征, (三) 对本地图像区域进行空间选择处理。 限制通过一种( 可理解的) 直径( ) 直径) 和面图像解解码( ) 和面面像( ) 提供为iestal- i- i- i- real- ib- Q) istral- g- 和Silal- gAN 和Silal- dal- dolal- disal) 的文献提供所需的必要参考文档所需的必要引用信息信息信息, 在Syal- disal- disal- 上, 上, 和Syal- disal- disal- disal 上, 和Syal- dal- gal- 和Seal- dal- disal- dal- sal- dal- sal- dal- sal- sal- sal- sal- sal- sal- dal- sal- dal- sal- dalal- dal- sal- disaldald- dal- dal- gal- gal- 和 sal- dal- dal- dal- dal- galdal- dal- gal- gald- dal- dal- dal- dal- dal- gal- dal- dal- dal

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年3月28日
Arxiv
0+阅读 · 2023年3月25日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员