Tangled multi-party dialogue context leads to challenges for dialogue reading comprehension, where multiple dialogue threads flow simultaneously within the same dialogue history, thus increasing difficulties in understanding a dialogue history for both human and machine. Dialogue disentanglement aims to clarify conversation threads in a multi-party dialogue history, thus reducing the difficulty of comprehending the long disordered dialogue passage. Existing studies commonly focus on utterance encoding with carefully designed feature engineering-based methods but pay inadequate attention to dialogue structure. This work designs a novel model to disentangle multi-party history into threads, by taking dialogue structure features into account. Specifically, based on the fact that dialogues are constructed through successive participation of speakers and interactions between users of interest, we extract clues of speaker property and reference of users to model the structure of a long dialogue record. The novel method is evaluated on the Ubuntu IRC dataset and shows state-of-the-art experimental results in dialogue disentanglement.


翻译:对话的分解旨在澄清多党对话史上的谈话线索,从而减少理解长期无序对话通道的困难。现有研究通常侧重于用精心设计的基于工程的特征方法的发音编码,但不够注意对话结构。这项工作设计了一个新颖的模式,通过考虑到对话结构特征,将多党历史分解为线。具体地说,基于通过演讲者连续参与和感兴趣的用户之间的互动来构建对话,我们提取演讲者财产的线索,并参考用户对长期对话记录结构的建模。新颖方法在Ubuntu IRC数据集上进行了评估,并展示了对话脱钩过程中最先进的实验结果。

0
下载
关闭预览

相关内容

【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
34+阅读 · 2021年11月30日
专知会员服务
52+阅读 · 2021年8月8日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
12+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年12月5日
Arxiv
23+阅读 · 2021年10月11日
Arxiv
6+阅读 · 2018年11月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
12+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员