Constrained clustering problems generalize classical clustering formulations, e.g., $k$-median, $k$-means, by imposing additional constraints on the feasibility of clustering. There has been significant recent progress in obtaining approximation algorithms for these problems, both in the metric and the Euclidean settings. However, the outlier version of these problems, where the solution is allowed to leave out $m$ points from the clustering, is not well understood. In this work, we give a general framework for reducing the outlier version of a constrained $k$-median or $k$-means problem to the corresponding outlier-free version with only $(1+\varepsilon)$-loss in the approximation ratio. The reduction is obtained by mapping the original instance of the problem to $f(k,m, \varepsilon)$ instances of the outlier-free version, where $f(k, m, \varepsilon) = \left( \frac{k+m}{\varepsilon}\right)^{O(m)}$. As specific applications, we get the following results: - First FPT (in the parameters $k$ and $m$) $(1+\varepsilon)$-approximation algorithm for the outlier version of capacitated $k$-median and $k$-means in Euclidean spaces with hard capacities. - First FPT (in the parameters $k$ and $m$) $(3+\varepsilon)$ and $(9+\varepsilon)$ approximation algorithms for the outlier version of capacitated $k$-median and $k$-means, respectively, in general metric spaces with hard capacities. - First FPT (in the parameters $k$ and $m$) $(2-\delta)$-approximation algorithm for the outlier version of the $k$-median problem under the Ulam metric. Our work generalizes the known results to a larger class of constrained clustering problems. Further, our reduction works for arbitrary metric spaces and so can extend clustering algorithms for outlier-free versions in both Euclidean and arbitrary metric spaces.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2020年9月21日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员