The practicality of reinforcement learning algorithms has been limited due to poor scaling with respect to the problem size, as the sample complexity of learning an $\epsilon$-optimal policy is $\tilde{\Omega}\left(|S||A|H^3 / \epsilon^2\right)$ over worst case instances of an MDP with state space $S$, action space $A$, and horizon $H$. We consider a class of MDPs for which the associated optimal $Q^*$ function is low rank, where the latent features are unknown. While one would hope to achieve linear sample complexity in $|S|$ and $|A|$ due to the low rank structure, we show that without imposing further assumptions beyond low rank of $Q^*$, if one is constrained to estimate the $Q$ function using only observations from a subset of entries, there is a worst case instance in which one must incur a sample complexity exponential in the horizon $H$ to learn a near optimal policy. We subsequently show that under stronger low rank structural assumptions, given access to a generative model, Low Rank Monte Carlo Policy Iteration (LR-MCPI) and Low Rank Empirical Value Iteration (LR-EVI) achieve the desired sample complexity of $\tilde{O}\left((|S|+|A|)\mathrm{poly}(d,H)/\epsilon^2\right)$ for a rank $d$ setting, which is minimax optimal with respect to the scaling of $|S|, |A|$, and $\epsilon$. In contrast to literature on linear and low-rank MDPs, we do not require a known feature mapping, our algorithm is computationally simple, and our results hold for long time horizons. Our results provide insights on the minimal low-rank structural assumptions required on the MDP with respect to the transition kernel versus the optimal action-value function.
翻译:暂无翻译