This paper introduces and provides an extensive simulation study of a new Approximate Bayesian Computation (ABC) framework for estimating the posterior distribution and the maximum likelihood estimate (MLE) of the parameters of models defined by intractable likelihood functions, which unifies ad extends previous ABC methods. This framework can describe the possibly skewed and high dimensional posterior distribution by a novel multivariate copula-based meta-\textit{t} distribution, based on univariate marginal posterior distributions which can account for skewness and accurately estimated by Distribution Random Forests (\texttt{drf}) while performing automatic summary statistics (covariates) selection, and on robustly-estimated copula dependence parameters. Also, the framework provides a novel multivariate mode estimator to perform for MLE and posterior mode estimation, and an optional step to perform model selection from a given set of models with posterior probabilities estimated by \texttt{drf}. The posterior distribution estimation accuracy of the ABC framework is illustrated and compared with previous standard ABC methods, through simulation studies involving low- and high-dimensional models with computable posterior distributions which are either unimodal, skewed, and multimodal; and exponential random graph and mechanistic network models which are each defined by an intractable likelihood from which it is costly to simulate large network datasets. This paper also introduces and studies a new new solution to simulation cost problem in ABC. Finally, the new framework is illustrated through analyses of large real-life networks of sizes ranging between 28,000 to 65.6 million nodes (between 3 million to 1.8 billion edges), including a large multilayer network with weighted directed edges. Keywords: Bayesian analysis, Maximum Likelihood, Intractable likelihood.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2021年2月13日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
14+阅读 · 2018年5月15日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
21+阅读 · 2021年2月13日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
14+阅读 · 2018年5月15日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员