Collision-free mobile robot navigation is an important problem for many robotics applications, especially in cluttered environments. In such environments, obstacles can be static or dynamic. Dynamic obstacles can additionally be interactive, i.e. changing their behavior according to the behavior of other entities. The perception and prediction modules of robotic systems create probabilistic representations and predictions of such environments. In this paper, we propose a novel prediction representation for interactive behaviors of dynamic obstacles. Then, we propose a real-time trajectory planning algorithm that probabilistically avoids collisions against static and interactive dynamic obstacles, and produces dynamically feasible trajectories. During decision making, our planner simulates the interactive behavior of dynamic obstacles in response to the actions planning robot takes. We explicitly minimize collision probabilities against static and dynamic obstacles using a multi-objective search formulation. Then, we formulate a quadratic program to safely fit a smooth trajectory to the search result while attempting to preserve the collision probabilities computed during search. We evaluate our algorithm extensively in simulations to show its performance under different environments and configurations using 78000 randomly generated cases. We compare its performance to a state-of-the-art trajectory planning algorithm for static and dynamic obstacle avoidance using 4500 randomly generated cases. We show that our algorithm achieves up to 3.8x success rate using as low as 0.18x time the baseline uses. We implement our algorithm for physical quadrotors, and show its feasibility in the real world.


翻译:在这样的环境中,障碍可以是静态的或动态的。动态障碍还可以是互动的,即根据其他实体的行为来改变其行为。机器人系统的感知和预测模块可以产生概率性的表现和对此类环境的预测。在本文中,我们为动态障碍的互动行为提出了一个新的预测说明。然后,我们提出一个实时轨迹规划算法,在概率上避免与静态和交互式动态障碍碰撞,并产生动态可行的轨迹。在决策过程中,我们的规划员可以模拟动态障碍的交互行为,以响应行动规划机器人的行为。我们明确将碰撞概率与静态和动态障碍的最小化。然后,我们用多目标搜索的公式,为动态障碍的交互性轨迹绘制一个新的预测表,同时试图保持在搜索过程中计算的低碰撞概率概率。我们广泛评价我们的轨迹算法,在模拟中展示其在不同环境和配置下的表现,使用78000个随机的行距成本性轨迹,我们将其业绩与动态的轨迹比进行对比。我们用轨迹来将轨迹上的轨迹式算算算算出我们所生成的轨迹上,我们所生成的轨迹动的轨迹是用来显示的。</s>

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员