Weitzman (1979) introduced the Pandora's Box problem as a model for sequential search with inspection costs, and gave an elegant index-based policy that attains provably optimal expected payoff. In various scenarios, the searching agent may select an option without making a costly inspection. Doval (2018) studied a version of Pandora's problem that allows this, and showed that the index-based policy and various other simple policies are no longer optimal. Beyhaghi and Kleinberg (2019) gave the first non-trivial approximation algorithm for the problem, showing a simple policy with expected payoff at least a $(1 - \frac 1 e)$-fraction that of the optimal policy. No hardness result for the problem was known. In this work, we show that it is NP-hard to compute an optimal policy for Pandora's problem with nonobligatory inspection. We also give a polynomial-time scheme that computes policies with an expected payoff at least $(0.8 - \epsilon)$-fraction of the optimal, for arbitrarily small $\epsilon > 0$.
翻译:维茨曼(1979年)引入了潘多拉的“盒子”问题,作为以检查成本相继搜索的模式,并给出了优雅的指数制政策,以达到理想的预期报酬。在各种情况下,搜索代理商可以选择一种选择,而不进行代价高昂的检查。道瓦尔(2018年)研究了潘多拉问题的版本,发现基于指数的政策和各种其他简单政策已不再是最佳的。贝哈吉和克莱因贝格(2019年)给出了这一问题的第一个非三轨近似算法,显示了一种简单的政策,其预期的回报至少为1美元 -\frac 1 e) 美元。对于这个问题没有得出任何硬性结果。在这项工作中,我们表明很难为潘多拉的问题制定最佳政策而进行非强制性的检查。我们还给出了一个多时制计划,用预期的回报至少为$(0.8 -\ epsilon) 来计算政策的最佳补偿。