Anomaly detection in time-series data is a critical challenge with significant implications for network security. Recent quantum machine learning approaches, such as quantum kernel methods and variational quantum circuits, have shown promise in capturing complex data distributions for anomaly detection but remain constrained by limited qubit counts. We introduce in this work a novel Quantum Gated Recurrent Unit (QGRU)-based Generative Adversarial Network (GAN) employing Successive Data Injection (SuDaI) and a multi-metric gating strategy for robust network anomaly detection. Our model uniquely utilizes a quantum-enhanced generator that outputs parameters (mean and log-variance) of a Gaussian distribution via reparameterization, combined with a Wasserstein critic to stabilize adversarial training. Anomalies are identified through a novel gating mechanism that initially flags potential anomalies based on Gaussian uncertainty estimates and subsequently verifies them using a composite of critic scores and reconstruction errors. Evaluated on benchmark datasets, our method achieves a high time-series aware F1 score (TaF1) of 89.43% demonstrating superior capability in detecting anomalies accurately and promptly as compared to existing classical and quantum models. Furthermore, the trained QGRU-WGAN was deployed on real IBM Quantum hardware, where it retained high anomaly detection performance, confirming its robustness and practical feasibility on current noisy intermediate-scale quantum (NISQ) devices.
 翻译:暂无翻译