This work proposes an algorithm for fMRI data analysis for the classification of ADHD disorders. There have been several breakthroughs in the analysis of fMRI via 3D convolutional neural networks (CNNs). With these new techniques it is possible to preserve the 3D spatial data of fMRI data. Additionally there have been recent advances in the use of 3D generative adversarial neural networks (GANs) for the generation of normal MRI data. This work utilizes multi modal 3D CNNs with data augmentation from 3D GAN for ADHD prediction from fMRI. By leveraging a 3D-GAN it would be possible to use deepfake data to enhance the accuracy of 3D CNN classification of brain disorders. A comparison will be made between a time distributed single modal 3D CNN model for classification and the modified multi modal model with MRI data as well.
翻译:这项工作提出了FMRI数据分析算法,用于对ADHD障碍进行分类。通过3D进化神经网络对FMRI的分析取得了一些突破。有了这些新技术,有可能保存FMRI数据的3D空间数据。此外,最近利用3D基因对抗神经网络(GANs)生成正常MRI数据的工作取得了进展。这项工作利用多式3D GAN数据增强的多式3DCNNCNN,数据来自3D GAN,用于FMRI的ADHD预测。通过利用3D-GAN,有可能使用深底假数据提高3DCNN脑障碍分类的准确性。将用一个分布时间的单一模式3DCNN分类模型和经过修改的多式模型与MRI数据进行比较。