Estimation problems with constrained parameter spaces arise in various settings. In many of these problems, the observations available to the statistician can be modelled as arising from the noisy realization of the image of a random linear operator; an important special case is random design regression. We derive sharp rates of estimation for arbitrary compact elliptical parameter sets and demonstrate how they depend on the distribution of the random linear operator. Our main result is a functional that characterizes the minimax rate of estimation in terms of the noise level, the law of the random operator, and elliptical norms that define the error metric and the parameter space. This nonasymptotic result is sharp up to an explicit universal constant, and it becomes asymptotically exact as the radius of the parameter space is allowed to grow. We demonstrate the generality of the result by applying it to both parametric and nonparametric regression problems, including those involving distribution shift or dependent covariates.
翻译:参数空间受到约束的估计问题在各种情况下都会出现。在许多这样的问题中,统计学家可以将可用的观测模拟为来自随机线性算子图像的噪声实现;一个重要的特例是随机设计回归。我们针对任意紧致椭圆形参数集推导出估计速率的尖锐结果,并演示了它们如何依赖于随机线性算子的分布。我们的主要结果是一个函数,用噪声水平、随机算子的法律以及定义误差度量和参数空间的椭圆规范来刻画估计的极小极大速率。这个非渐进结果是尖锐的,除了一个显式的通用常数外是精确的,并在参数空间的半径被允许增长时变得渐近精确。我们通过将其应用于包括分布变化或相关协变量的参数回归和非参数回归问题在内的众多问题,展示了结果的普适性。