We propose a decomposition of constitutive relations into crack-driving and persistent portions, specifically designed for materials with anisotropic/orthotropic behavior in the phase field approach to fracture to account for the tension-compression asymmetry. This decomposition follows a variational framework, satisfying the orthogonality condition for anisotropic materials. This implies that the present model can be applied to arbitrary anisotropic elastic behavior in a three-dimensional setting. On this basis, we generalize two existing models for tension-compression asymmetry in isotropic materials, namely the volumetric-deviatoric model and the no-tension model, towards materials with anisotropic nature. Two benchmark problems, single notched tensile shear tests, are used to study the performance of the present model. The results can retain the anisotropic constitutive behavior and the tension-compression asymmetry in the crack response, and are qualitatively in accordance with the expected behavior for orthotropic materials. Furthermore, to study the direction of maximum energy dissipation, we modify the surface integral based energy release computation, $G_\theta$, to account only for the crack-driving energy. The computed energies with our proposed modifications predict the fracture propagation direction correctly compared with the standard G-theta method.
翻译:我们建议将构成关系分解为裂变驱动和持久性部分,具体针对分流法中骨折的分流法中具有厌食/激动行为的材料,以顾及紧张压抑不对称。这种分解遵循一个变异框架,满足了厌食材料的正向性条件。这意味着目前的模型可以在三维环境中适用于任意的厌食性弹性行为。在此基础上,我们推广了两种现有的异向材料紧张-压抑不对称模式,即:体积-加速模型和不强化模型,以研究具有厌食性质的材料。使用两种基准问题,即单一的无抗拉剪切片测试,来研究当前模型的性能。结果可以在裂变反应中保留异向性组织行为和紧张-压力不对称行为,并且质量符合对异向材料的预期行为。此外,我们研究最大能量分流模式的方向,我们修改了以气压为最大分流的气压模型,我们用地平流法对地平流法进行了精确的计算。