In this work, a class of non-linear weakly singular fractional integro-differential equations is considered, and we first prove existence, uniqueness, and smoothness properties of the solution under certain assumptions on the given data. We propose a numerical method based on spectral Petrov-Galerkin method that handling to the non-smooth behavior of the solution. The most outstanding feature of our approach is to evaluate the approximate solution by means of recurrence relations despite solving complex non-linear algebraic system. Furthermore, the well-known exponential accuracy is established in $L^{2}$-norm, and we provide some examples to illustrate the theoretical results and the performance of the proposed method.
翻译:在这项工作中,我们考虑了一系列非线性微小的分数分化异异方方方程式,我们首先根据特定数据的某些假设,证明解决方案的存在、独特性和平稳性。我们提议了一个基于Petrov-Galerkin光谱方法的数字方法,该方法处理解决方案的非悬浮行为。我们方法最突出的特征是,在解决复杂的非线性代数系统的同时,通过重复关系来评估近似解决方案。此外,众所周知的指数精确度以$L ⁇ 2}-norm确定,我们提供一些例子来说明拟议方法的理论结果和绩效。