Integrodifference equations are versatile models in theoretical ecology for the spatial dispersal of species evolving in non-overlapping generations. The dynamics of these infinite-dimensional discrete dynamical systems is often illustrated using computational simulations. This paper studies the effect of Nystr\"om discretization to the local dynamics of periodic integrodifference equations with H\"older continuous functions over a compact domain as state space. We prove persistence and convergence for hyperbolic periodic solutions and their associated stable and unstable manifolds respecting the convergence order of the quadrature/cubature method.
翻译:Integredifference 等方程式是理论生态学中用于在非重叠世代中演变的物种空间分布的多用途模型。这些无限的离散动态系统的动态往往用计算模拟来说明。本文研究Nystr\'om 与定期的Ingredifference 等方程式的局部动态分解的影响,该等方程式具有H\"老的连续功能,在作为国家空间的紧凑领域。我们证明双曲周期解决方案及其相关的稳定、不稳定的元件的持久性和趋同性,符合二次/孵化法的趋同顺序。