This paper describes a trapezoidal quadrature method for the discretization of singular and hypersingular boundary integral operators (BIOs) that arise in solving boundary value problems for elliptic partial differential equations. The quadrature is based on a uniform grid in parameter space coupled with the standard punctured Trapezoidal rule. A key observation is that the error incurred by the singularity in the kernel can be expressed exactly using generalized Euler-Maclaurin formulae that involve the Riemann zeta function in 2D and the Epstein zeta functions in 3D. These expansions are exploited to correct the errors via local stencils at the singular point using a novel systematic moment-fitting approach. This new method provides a unified treatment of all common BIOs (Laplace, Helmholtz, Stokes, etc.). We present numerical examples that show convergence of up to 32nd-order in 2D and 9th-order in 3D with respect to the mesh size.
翻译:本文描述了在解决椭圆部分差异方程式的边界值问题时产生的单项和超超度边界整体操作器分离的捕捉式二次曲线方法。 二次曲线以参数空间的统一网格为基础, 加上标准的穿透式轨迹规则。 一项关键观察是, 内核中独一性的错误可以精确地用通用的 Euler- Maclaurin 公式表示, 该公式涉及2D 中的Riemann zeta 函数和 3D 中的 Epstein zeta 函数。 这些扩展被利用, 利用新颖的系统化时间配置方法, 通过单点的当地电线钉纠正错误。 这个新方法提供了对所有通用的 BIOs (Laplace, Helmholtz, Stokes, et.) 的统一处理 。 我们给出的数字示例显示, 在2D 和 3D 中最多32 级的电流。