In this work, we consider the spatial-temporal multi-species competition model. A mathematical model is described by a coupled system of nonlinear diffusion-reaction equations. We use a finite volume approximation with semi-implicit time approximation for the numerical solution of the model with corresponding boundary and initial conditions. To understand the effect of the diffusion to solution in one and two-dimensional formulations, we present numerical results for several cases of the parameters related to the survival scenarios. The random initial conditions' effect on the time to reach equilibrium is investigated. The influence of diffusion on the survival scenarios is presented. In real-world problems, values of the parameters are usually unknown and vary in some range. In order to evaluate the impact of parameters on the system stability, we simulate a spatial-temporal model with random parameters and perform factor analysis for two and three-species competition models.
翻译:在这项工作中,我们考虑的是空间时空多物种竞争模型。数学模型由非线性扩散反应方程式结合系统来描述。我们使用一个量的有限近似值,用半隐含时间近似值来用相应的边界和初始条件来计算模型的数字解决方案。为了理解以一维和二维配方法向溶解法扩散的影响,我们为与生存情景有关的若干参数提供了数字结果。调查了随机初始条件对达到平衡的时间的影响。介绍了扩散对生存情景的影响。在现实世界中,参数的值通常未知,而且在某些范围内也各不相同。为了评估参数对系统稳定性的影响,我们用随机参数模拟一个空间时际模型,并对两个和三个物种的竞争模型进行要素分析。