In this work we begin a theoretical and numerical investigation on the spectra of evolution operators of neutral renewal equations, with the stability of equilibria and periodic orbits in mind. We start from the simplest form of linear periodic equation with one discrete delay and fully characterize the spectrum of its monodromy operator. We perform numerical experiments discretizing the evolution operators via pseudospectral collocation, confirming the theoretical results and giving perspectives on the generalization to systems and to multiple delays. Although we do not attempt to perform a rigorous numerical analysis of the method, we give some considerations on a possible approach to the problem.
翻译:在这项工作中,我们开始对中性再生方程式进化操作者的光谱进行理论和数字调查,同时考虑到平衡和周期轨道的稳定性。我们从最简单的线性定期等式开始,一个单独的延迟,并充分描述其单田操作者的频谱。我们进行数字实验,通过假光谱合用同一地点将进化操作者分开,确认理论结果,并从各种系统和多重延迟的角度来看待一般化问题。虽然我们不试图对方法进行严格的数字分析,但我们对解决这一问题的可能办法进行了一些考虑。