This article studies a parabolic-elliptic system modelling the pattern formation in E. coli bacteria in response to a chemoattractant known as acylhomoserine lactone concentration (AHL). The system takes into account certain bacterial strains with motility regulation, and the parameters of the equations represent the bacterial logistic growth, AHL diffusion and the rates of production and degradation of AHL. We consider the numerical solution to the system using the Generalized Finite Difference (GFD) Method, a meshless method known to effectively compute numerical solutions to nonlinear problems. The paper is organized to first explain the derivation of the explicit formulae of the method, followed by the study of the convergence of the explicit scheme. Then, several examples over regular and irregular meshes are given.
翻译:本文研究了一个描述大肠杆菌在对乳酰基果酸酯的趋化剂浓度(AHL)产生响应时的模式形成的椭圆-抛物型系统。该系统考虑到某些细菌菌株的运动调节,并且方程的参数表示细菌的逻辑生长、AHL的扩散以及AHL的产生和降解速率。我们考虑使用广义有限差分法(GFD)的数值解,它是一种无网格方法,已被证明可以有效地计算非线性问题的数值解。该论文首先解释了该方法的显式公式的推导,然后研究了显式格式的收敛性。接着,给出了在规则和不规则网格上的几个例子。