In this article, we study Euler characteristic techniques in topological data analysis. Pointwise computing the Euler characteristic of a family of simplicial complexes built from data gives rise to the so-called Euler characteristic profile. We show that this simple descriptor achieve state-of-the-art performance in supervised tasks at a very low computational cost. Inspired by signal analysis, we compute hybrid transforms of Euler characteristic profiles. These integral transforms mix Euler characteristic techniques with Lebesgue integration to provide highly efficient compressors of topological signals. As a consequence, they show remarkable performances in unsupervised settings. On the qualitative side, we provide numerous heuristics on the topological and geometric information captured by Euler profiles and their hybrid transforms. Finally, we prove stability results for these descriptors as well as asymptotic guarantees in random settings.
翻译:在本文中,我们研究了拓扑数据分析中的欧拉特征技巧。通过计算从数据构建的一族单纯复合体的点态欧拉特征,形成了所谓的欧拉特征剖面。我们展示了这一简单描述符在有监督任务中以非常低的计算成本实现了最先进的性能。受信号分析启发,我们计算欧拉特征剖面的混合变换。这些积分变换混合了欧拉特征技巧和勒贝格积分,提供了高效的拓扑信号压缩器。因此,在无监督设置中,它们表现出了卓越的性能。在定性方面,我们提供了关于欧拉剖面及其混合变换所捕获的拓扑和几何信息的众多启示。最后,我们证明了这些描述符的稳定性和随机设置下的渐近保证。