We study a sequential elimination contest where players are filtered prior to the round of competing for prizes. This is motivated by the practice that many crowdsourcing contests have very limited resources of reviewers and want to improve the overall quality of the submissions. We first consider a setting where the designer knows the ranking of the abilities (types) of all $n_1$ registered players, and admit the top $n_2$ players with $2\leq n_2 \leq n_1$ into the contest. The players admitted into the contest update their beliefs about their opponents based on the signal that their abilities are among the top $n_2$. We find that their posterior beliefs, even with IID priors, are correlated and depend on players' private abilities. We explicitly characterize the symmetric and unique Bayesian equilibrium strategy. We find that each admitted player's equilibrium effort is increasing in $n_2$ when $n_2 \in [\lfloor{(n_1+1)/2}\rfloor+1,n_1]$, but not monotone in general when $n_2 \in [2,\lfloor{(n_1+1)/2}\rfloor+1]$. Surprisingly, despite this non-monotonicity, all players exert their highest efforts when $n_2=n_1$. As a sequence, if the designer has sufficient capacity, he should admit all players to maximize their equilibrium efforts. This result holds generally -- it is true under any ranking-based reward structure, ability distribution, and cost function. We also discuss the situation where the designer can only admit $c<n_1$ players. Our numerical results show that, in terms of the expected highest or total efforts, the optimal $n_2$ is either $2$ or $c$. Finally, we extend our model to a two-stage setting, where players with top first-stage efforts can proceed to the second stage competing for prizes. We establish an intriguing negative result in this setting: there does not exist a symmetric and monotone Perfect Bayesian equilibrium.


翻译:我们研究了一种连续淘汰赛,其中选手在参加比赛争夺奖品之前会被筛选过滤。这是基于实践中有许多众包比赛的评审资源非常有限,并且想要提高提交的整体质量的原因。我们首先考虑了一种情况,即设计者知道所有 $n_1$ 注册选手的能力(类型)排名,并且接受排名前 $n_2$ 名的选手参加比赛,其中 $2\leq n_2 \leq n_1$。被邀请参加比赛的选手根据他们的能力排名进入前 $n_2$ 名的信号更新对手的信念。我们发现,即使有 IID 先验,他们的后验信念也是相关的,并且取决于选手的私人能力。我们明确地描述了对称且唯一的贝叶斯均衡战略。我们发现,当 $n_2 \in [\lfloor{(n_1+1)/2}\rfloor+1,n_1]$ 时,每个被邀请的选手的均衡努力都随 $n_2$ 的增加而增加,但一般情况下并不单调,当 $n_2 \in [2,\lfloor{(n_1+1)/2}\rfloor+1]$ 时。令人惊讶的是,尽管存在这种非单调性,当 $n_2=n_1$ 时所有选手都会尽最大努力。因此,如果设计者有足够的容量,他应该接受所有选手以最大化它们的均衡努力。这个结论是普遍适用的——它适用于任何基于排名的奖励结构、能力分布和成本函数。我们还讨论了设计者只能邀请 $c<n_1$ 个选手的情况。我们的数值结果表明,就预期的最高或总努力而言,最优的 $n_2$ 要么是 $2$,要么是 $c$。最后,我们将模型扩展到一个两阶段的设置,其中第一阶段表现最好的选手可以进入第二阶段争夺奖品。我们在这个设置中建立了一个有趣的负面结果:没有对称单调完美贝叶斯均衡。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
我的RL民科之路:从NeurIPS 2019到OpenAccept2022
PaperWeekly
0+阅读 · 2022年9月24日
我的RL民科之路:从NeurIPS2019到OpenAccept2022
机器之心
0+阅读 · 2022年9月24日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月1日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
相关资讯
我的RL民科之路:从NeurIPS 2019到OpenAccept2022
PaperWeekly
0+阅读 · 2022年9月24日
我的RL民科之路:从NeurIPS2019到OpenAccept2022
机器之心
0+阅读 · 2022年9月24日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员