Manipulating deformable objects, such as cloth and ropes, is a long-standing challenge in robotics: their large number of degrees of freedom (DoFs) and complex non-linear dynamics make motion planning extremely difficult. This work aims to learn latent Graph dynamics for DefOrmable Object Manipulation (G-DOOM). To tackle the challenge of many DoFs and complex dynamics, G-DOOM approximates a deformable object as a sparse set of interacting keypoints and learns a graph neural network that captures abstractly the geometry and interaction dynamics of the keypoints. Further, to tackle the perceptual challenge, specifically, object self-occlusion, G-DOOM adds a recurrent neural network to track the keypoints over time and condition their interactions on the history. We then train the resulting recurrent graph dynamics model through contrastive learning in a high-fidelity simulator. For manipulation planning, G-DOOM explicitly reasons about the learned dynamics model through model-predictive control applied at each of the keypoints. We evaluate G-DOOM on a set of challenging cloth and rope manipulation tasks and show that G-DOOM outperforms a state-of-the-art method. Further, although trained entirely on simulation data, G-DOOM transfers directly to a real robot for both cloth and rope manipulation in our experiments.
翻译:G-DOOM在机器人中长期面临一个长期挑战:其自由度(DoFs)和复杂的非线性动态使运动规划极为困难。这项工作旨在学习用于调控天体操纵(G-DOOM)的潜伏图形动态。为了应对许多DOOM和复杂动态的挑战,G-DOM将一个变形对象视为一组零散的交互式关键点,并学习一个图形神经网络,它抽象地捕捉了关键点的几何和互动动态。此外,为了应对概念性挑战,特别是目标自我隔离,G-DOM增加了一个经常性的神经网络,以跟踪时间和历史条件的调控关键点。我们随后通过高纤维模拟器的对比学习,将由此产生的复发图形动态模型训练成一套对比性模型。为了操纵规划,G-DOOM明确了通过在每一个关键点上应用的模型定位控制对学习的动态模型进行解释。我们评估G-DOOM的G-DOOM在一套具有挑战性、但经过训练的软质的模型操作方法上,将GDO-DO在一套具有挑战性的实际操作方法上,进一步显示GDOOM在G-DO-roup-real的模型中,我们一个具有挑战性的实际的模型的模型的模型的模型的模型操作任务和进一步展示。