摘要 随着深度学习算法在图像分割领域的成功应用,在图像实例分割方向上涌现出一大批优秀的算法架构.这些架构在分割效果、运行速度等方面都超越了传统方法.本文围绕图像实例分割技术的最新研究进展,对现阶段经典网络架构和前沿网络架构进行梳理总结,结合常用数据集和权威评价指标对各个架构的分割效果进行比较和分析.最后,对目前图像实例分割技术面临的挑战以及可能的发展趋势进行了展望.

http://www.ejournal.org.cn/CN/abstract/abstract12215.shtml

成为VIP会员查看完整内容
60

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
119+阅读 · 2021年4月29日
基于深度学习的行人检测方法综述
专知会员服务
68+阅读 · 2021年4月14日
专知会员服务
67+阅读 · 2021年3月23日
专知会员服务
84+阅读 · 2021年1月7日
专知会员服务
21+阅读 · 2021年1月5日
专知会员服务
65+阅读 · 2020年12月24日
专知会员服务
45+阅读 · 2020年12月4日
深度学习目标检测方法综述
专知会员服务
268+阅读 · 2020年8月1日
基于小样本学习的图像分类技术综述
专知会员服务
148+阅读 · 2020年5月6日
基于深度学习的多标签生成研究进展
专知
4+阅读 · 2020年4月25日
基于深度学习的视频目标检测综述
极市平台
15+阅读 · 2019年7月19日
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
计算机视觉方向简介 | 目标检测最新进展总结与展望
计算机视觉life
9+阅读 · 2018年10月28日
干货 | 基于深度学习的目标检测算法综述
AI科技评论
18+阅读 · 2018年9月1日
博客 | 基于深度学习的目标检测算法综述(二)
AI研习社
11+阅读 · 2018年8月22日
干货 | 基于深度学习的目标检测算法综述(二)
AI科技评论
21+阅读 · 2018年8月20日
基于深度学习的图像目标检测(下)
机器学习研究会
12+阅读 · 2018年1月1日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
Arxiv
0+阅读 · 2021年4月27日
Arxiv
6+阅读 · 2019年9月25日
UPSNet: A Unified Panoptic Segmentation Network
Arxiv
3+阅读 · 2019年1月12日
Arxiv
6+阅读 · 2018年7月9日
Arxiv
7+阅读 · 2018年1月24日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关VIP内容
专知会员服务
119+阅读 · 2021年4月29日
基于深度学习的行人检测方法综述
专知会员服务
68+阅读 · 2021年4月14日
专知会员服务
67+阅读 · 2021年3月23日
专知会员服务
84+阅读 · 2021年1月7日
专知会员服务
21+阅读 · 2021年1月5日
专知会员服务
65+阅读 · 2020年12月24日
专知会员服务
45+阅读 · 2020年12月4日
深度学习目标检测方法综述
专知会员服务
268+阅读 · 2020年8月1日
基于小样本学习的图像分类技术综述
专知会员服务
148+阅读 · 2020年5月6日
相关资讯
基于深度学习的多标签生成研究进展
专知
4+阅读 · 2020年4月25日
基于深度学习的视频目标检测综述
极市平台
15+阅读 · 2019年7月19日
最全综述 | 图像分割算法
计算机视觉life
14+阅读 · 2019年6月20日
计算机视觉方向简介 | 目标检测最新进展总结与展望
计算机视觉life
9+阅读 · 2018年10月28日
干货 | 基于深度学习的目标检测算法综述
AI科技评论
18+阅读 · 2018年9月1日
博客 | 基于深度学习的目标检测算法综述(二)
AI研习社
11+阅读 · 2018年8月22日
干货 | 基于深度学习的目标检测算法综述(二)
AI科技评论
21+阅读 · 2018年8月20日
基于深度学习的图像目标检测(下)
机器学习研究会
12+阅读 · 2018年1月1日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
相关论文
Arxiv
0+阅读 · 2021年4月27日
Arxiv
6+阅读 · 2019年9月25日
UPSNet: A Unified Panoptic Segmentation Network
Arxiv
3+阅读 · 2019年1月12日
Arxiv
6+阅读 · 2018年7月9日
Arxiv
7+阅读 · 2018年1月24日
Arxiv
4+阅读 · 2017年11月14日
微信扫码咨询专知VIP会员