Cytometry enables precise single-cell phenotyping within heterogeneous populations. These cell types are traditionally annotated via manual gating, but this method suffers from a lack of reproducibility and sensitivity to batch-effect. Also, the most recent cytometers - spectral flow or mass cytometers - create rich and high-dimensional data whose analysis via manual gating becomes challenging and time-consuming. To tackle these limitations, we introduce Scyan (https://github.com/MICS-Lab/scyan), a Single-cell Cytometry Annotation Network that automatically annotates cell types using only prior expert knowledge about the cytometry panel. We demonstrate that Scyan significantly outperforms the related state-of-the-art models on multiple public datasets while being faster and interpretable. In addition, Scyan overcomes several complementary tasks such as batch-effect removal, debarcoding, and population discovery. Overall, this model accelerates and eases cell population characterisation, quantification, and discovery in cytometry.
翻译:细胞学使得我们能够在异质性群体中精确地进行单个细胞表型分析。 传统上通过手动操作来注释这些细胞类型,但是这种方法存在重复性不足和对批量效应的敏感性问题。此外,最新的光谱流式细胞术或质谱流式细胞术创造的数据维度高,使用手动操作方法进行分析变得十分耗时费力。为了解决这些限制,我们引入Scyan(https://github.com/MICS-Lab/scyan),这是一种单细胞细胞学注释网络,它仅使用关于细胞学面板的先前专家知识来自动注释细胞类型。我们证明,与相关最先进的模型相比,Scyan在多个公共数据集上显著优于它们,同时速度更快且易于解释。此外,Scyan克服了其他一些补充任务,例如批次效应去除,去解码和种群发现。总的来说,该模型加速和简化了在细胞学中对细胞群体进行表征,量化和发现的工作。