Fairly dividing a set of indivisible resources to a set of agents is of utmost importance in some applications. However, after an allocation has been implemented the preferences of agents might change and envy might arise. We study the following problem to cope with such situations: Given an allocation of indivisible resources to agents with additive utility-based preferences, is it possible to socially donate some of the resources (which means removing these resources from the allocation instance) such that the resulting modified allocation is envy-free (up to one good). We require that the number of deleted resources and/or the caused utilitarian welfare loss of the allocation are bounded. We conduct a thorough study of the (parameterized) computational complexity of this problem considering various natural and problem-specific parameters (e.g., the number of agents, the number of deleted resources, or the maximum number of resources assigned to an agent in the initial allocation) and different preference models, including unary and 0/1-valuations. In our studies, we obtain a rich set of (parameterized) tractability and intractability results and discover several surprising contrasts, for instance, between the two closely related fairness concepts envy-freeness and envy-freeness up to one good and between the influence of the parameters maximum number and welfare of the deleted resources.


翻译:将一组不可分割的资源公平划分为一组代理人,在某些应用中极为重要。然而,在分配后,代理人的偏好可能会改变,可能会产生嫉妒。我们研究以下问题,以应对这种情况:鉴于将不可分割的资源分配给具有基于公用事业的累加性优惠的代理人,是否有可能在社会上捐赠一些资源(这意味着将这些资源从分配中剔除),从而导致的经修改的分配是无嫉妒的(最多只有一种好处 ) 。我们要求将被删除的资源数量和(或)因分配而导致的功利损失加以限定。我们考虑到各种自然和特定问题参数(例如代理人的数目、被删除的资源数目或分配给代理人的最大资源数目)以及不同的优惠模式,包括不值和1/1评价。我们的研究要求,考虑到两个密切相关的无嫉妒和无贪婪程度的公平概念与被删除的资源之间的最大影响,我们获得了一套(经调整的)可追溯性和可追溯性成果,并发现了几个惊人的对比,例如,两个密切相关的无贪婪和无贪婪程度的公平性概念与被删除的资源之间的最大程度。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员