Multi-physical inversion plays a critical role in geophysics. It has been widely used to infer various physical properties (such as velocity and conductivity), simultaneously. Among those inversion problems, some are explicitly governed by partial differential equations (PDEs), while others are not. Without explicit governing equations, conventional multi-physical inversion techniques will not be feasible and data-driven inversion require expensive full labels. To overcome this issue, we develop a new data-driven multi-physics inversion technique with extremely weak supervision. Our key finding is that the pseudo labels can be constructed by learning the local relationship among geophysical properties at very sparse locations. We explore a multi-physics inversion problem from two distinct measurements (seismic and EM data) to three geophysical properties (velocity, conductivity, and CO$_2$ saturation). Our results show that we are able to invert for properties without explicit governing equations. Moreover, the label data on three geophysical properties can be significantly reduced by 50 times (from 100 down to only 2 locations).
翻译:多物理反转在地球物理学中起着关键作用。 它被广泛用来同时推断各种物理特性( 如速度和导电率) 。 在这些反转问题中,有些问题明确由部分差异方程式( PDEs) 管理,而另一些问题则没有。 没有明确的治理方程式,传统的多物理反转技术将不可行,而数据驱动反转需要昂贵的完整标签。 要克服这个问题, 我们开发了一种新的数据驱动的多物理反转技术, 监管极为薄弱。 我们的关键发现是, 假标签可以通过在非常稀少的地点学习地球物理特性之间的本地关系来构建。 我们从两种截然不同的测量( 地震和EM 数据) 到三种地球物理特性( 速度、 传导率 和 CO$_ 2 饱和度) 来探索多物理反转问题。 我们的结果显示, 我们有能力在没有明确治理方程式的情况下对属性进行反转转。 此外, 三种地球物理特性的标签数据可以大幅减少50倍( 从100 到仅两个地点 ) 。