Surface visualizations are essential in analyzing three-dimensional spatiotemporal phenomena. Given its ability to provide enhanced spatial perception and scene maneuverability, virtual reality (VR) is an essential medium for surface visualization and interaction tasks. Such tasks primarily rely on visual cues that require an unoccluded view of the surface region under consideration. Haptic force feedback is a tangible interaction modality that alleviates the reliance on visual-only cues by allowing a direct physical sensation of the surface. In this paper, we evaluate the use of a force-based haptic stylus compared to handheld VR controllers via a between-subjects user study involving fundamental interaction tasks performed on surface visualizations. Keeping a consistent visual design across both modalities, our study incorporates tasks that require the localization of the highest, lowest, and random points on surfaces; and tasks that focus on brushing curves on surfaces with varying complexity and occlusion levels. Our findings show that participants took longer to brush curves using the haptic modality but could draw smoother curves compared to the handheld controllers. In contrast, haptics was faster in point localization, but the accuracy depended on the visual cues and occlusions associated with the tasks. Finally, we discuss participant feedback on using haptic force feedback as a tangible input modality and share takeaways to help outline design strategies for using haptics-based tangible inputs for surface visualization and interaction tasks.
翻译:暂无翻译