This paper presents a new Bayesian framework for quantifying discretization errors in numerical solutions of ordinary differential equations. By modelling the errors as random variables, we impose a monotonicity constraint on the variances, referred to as discretization error variances. The key to our approach is the use of a shrinkage prior for the variances coupled with variable transformations. This methodology extends existing Bayesian isotonic regression techniques to tackle the challenge of estimating the variances of a normal distribution. An additional key feature is the use of a Gaussian mixture model for the $\log$-$\chi^2_1$ distribution, enabling the development of an efficient Gibbs sampling algorithm for the corresponding posterior.
翻译:暂无翻译