Image denoising and artefact removal are complex inverse problems admitting multiple valid solutions. Unsupervised diversity restoration, that is, obtaining a diverse set of possible restorations given a corrupted image, is important for ambiguity removal in many applications such as microscopy where paired data for supervised training are often unobtainable. In real world applications, imaging noise and artefacts are typically hard to model, leading to unsatisfactory performance of existing unsupervised approaches. This work presents an interpretable approach for unsupervised and diverse image restoration. To this end, we introduce a capable architecture called Hierarchical DivNoising (HDN) based on hierarchical Variational Autoencoder. We show that HDN learns an interpretable multi-scale representation of artefacts and we leverage this interpretability to remove imaging artefacts commonly occurring in microscopy data. Our method achieves state-of-the-art results on twelve benchmark image denoising datasets while providing access to a whole distribution of sensibly restored solutions. Additionally, we demonstrate on three real microscopy datasets that HDN removes artefacts without supervision, being the first method capable of doing so while generating multiple plausible restorations all consistent with the given corrupted image.
翻译:图像除去和切除是复杂的复杂反向问题,承认多种有效的解决方案。 不受监督的多样性恢复,即获得一套多种多样的可能的修复,给一个腐败的图像,对于在诸如显微镜等许多应用中清除模糊性非常重要,因为用于监督培训的配对数据往往无法保存。 在现实世界应用中,成像噪音和人工制品通常难以建模,导致现有未受监督方法的不令人满意性能。 这项工作为未受监督和多样化的图像恢复提供了一个可解释的方法。 为此,我们引入了一个基于等级变异自动coder的、称为等级化的等级化DHDN(HDN)的有能力结构。 我们显示,HDN学会了一种可解释的多尺度手工艺品代表,我们利用这种可解释性来清除在显微镜数据中常见的成像制品。 我们的方法在12个基准图像解析数据集上取得了最新的结果,同时提供了整个感知性恢复解决方案的分布。 此外,我们展示了三个真实的显微镜数据集,使HDN在没有监督的情况下清除手工艺品,同时进行可信的恢复所有图像。