Binary pointwise labels (aka implicit feedback) are heavily leveraged by deep learning based recommendation algorithms nowadays. In this paper we discuss the limited expressiveness of these labels may fail to accommodate varying degrees of user preference, and thus lead to conflicts during model training, which we call annotation bias. To solve this issue, we find the soft-labeling property of pairwise labels could be utilized to alleviate the bias of pointwise labels. To this end, we propose a momentum contrast framework (MP2) that combines pointwise and pairwise learning for recommendation. MP2 has a three-tower network structure: one user network and two item networks. The two item networks are used for computing pointwise and pairwise loss respectively. To alleviate the influence of the annotation bias, we perform a momentum update to ensure a consistent item representation. Extensive experiments on real-world datasets demonstrate the superiority of our method against state-of-the-art recommendation algorithms.
翻译:二进制标签(aka 隐含的反馈) 大量被基于深层学习的建议算法所利用。 在本文中,我们讨论这些标签的有限表达性可能无法适应不同程度的用户偏好,从而导致模式培训中的冲突,我们称之为批注偏差。为了解决这个问题,我们发现对称标签的软标签属性可以用来减轻点标签的偏差。为此,我们提议了一个将点对准和对称学习结合起来的建议对比度框架(MP2 ) 。 MP2有一个三进制网络结构: 一个用户网络和两个项目网络。 两个项目网络分别用于计算点对称偏差和对称损失。 为了减轻批注偏差的影响,我们进行了动力更新,以确保一致的项目代表性。 在真实世界数据集上进行的广泛实验表明我们的方法优于最先进的建议算法。