A strong visual object tracker nowadays relies on its well-crafted modules, which typically consist of manually-designed network architectures to deliver high-quality tracking results. Not surprisingly, the manual design process becomes a particularly challenging barrier, as it demands sufficient prior experience, enormous effort, intuition, and perhaps some good luck. Meanwhile, neural architecture search has gaining grounds in practical applications as a promising method in tackling the issue of automated search of feasible network structures. In this work, we propose a novel cell-level differentiable architecture search mechanism with early stopping to automate the network design of the tracking module, aiming to adapt backbone features to the objective of Siamese tracking networks during offline training. Besides, the proposed early stopping strategy avoids over-fitting and performance collapse problems leading to generalization improvement. The proposed approach is simple, efficient, and with no need to stack a series of modules to construct a network. Our approach is easy to be incorporated into existing trackers, which is empirically validated using different differentiable architecture search-based methods and tracking objectives. Extensive experimental evaluations demonstrate the superior performance of our approach over five commonly-used benchmarks.


翻译:现在,一个强大的视觉物体跟踪器依靠其精心设计的模块,这些模块通常包括人工设计的网络结构,以提供高质量的跟踪结果。毫不奇怪,手工设计过程成为一个特别具有挑战性的障碍,因为它需要足够的先前经验、巨大的努力、直觉和或许是一些幸运。与此同时,神经结构搜索在实际应用方面已获得越来越多的依据,作为解决可行网络结构自动搜索问题的有希望的方法。在这项工作中,我们建议建立一个新型的细胞级差异性建筑搜索机制,及早停止将跟踪模块的网络设计自动化,目的是在离线培训期间使主干特征适应西亚米斯跟踪网络的目标。此外,拟议的早期停止战略避免了超时和性能崩溃问题,导致总体化的改进。拟议方法简单、高效,不需要堆叠一系列模块来构建网络。我们的方法很容易被纳入现有的跟踪器,而现有的跟踪器则使用不同的建筑搜索方法和跟踪目标,经过经验验证,广泛实验性评估表明我们的方法优于五个常用的基准。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
44+阅读 · 2020年10月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
9+阅读 · 2020年10月29日
Arxiv
8+阅读 · 2020年6月15日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
9+阅读 · 2020年10月29日
Arxiv
8+阅读 · 2020年6月15日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
9+阅读 · 2018年3月10日
Top
微信扫码咨询专知VIP会员