Many scenarios in mobility and traffic involve multiple different agents that need to cooperate to find a joint solution. Recent advances in behavioral planning use Reinforcement Learning to find effective and performant behavior strategies. However, as autonomous vehicles and vehicle-to-X communications become more mature, solutions that only utilize single, independent agents leave potential performance gains on the road. Multi-Agent Reinforcement Learning (MARL) is a research field that aims to find optimal solutions for multiple agents that interact with each other. This work aims to give an overview of the field to researchers in autonomous mobility. We first explain MARL and introduce important concepts. Then, we discuss the central paradigms that underlie MARL algorithms, and give an overview of state-of-the-art methods and ideas in each paradigm. With this background, we survey applications of MARL in autonomous mobility scenarios and give an overview of existing scenarios and implementations.
翻译:流动和交通方面的许多情况都涉及需要合作寻找共同解决办法的多种不同因素。行为规划方面的最近进展利用强化学习来寻找有效和表现行为战略。然而,随着自主车辆和车辆对X的通信变得更加成熟,仅使用单一独立代理人的解决方案在道路上留下了潜在的绩效收益。多代理强化学习(MARL)是一个研究领域,旨在为相互互动的多个代理人找到最佳解决方案。这项工作旨在向自主流动的研究人员概述实地情况。我们首先解释MARL并介绍重要概念。然后,我们讨论MARL算法所依据的中心模式,并概述每种模式中最先进的方法和想法。根据这种背景,我们调查MARL在自主流动情景中的应用情况,并概述现有情景和实施情况。