Recent advancements in large language models (LLMs) have enabled their successful application to a broad range of tasks. However, in information-intensive tasks, the prompt length can grow fast, leading to increased computational requirements, performance degradation, and induced biases from irrelevant or redundant information. Recently, various prompt compression techniques have been introduced to optimize the trade-off between reducing input length and retaining performance. We propose a holistic evaluation framework that allows for in-depth analysis of prompt compression methods. We focus on three key aspects, besides compression ratio: (i) downstream task performance, (ii) grounding in the input context, and (iii) information preservation. Using our framework, we analyze state-of-the-art soft and hard compression methods and show that some fail to preserve key details from the original prompt, limiting performance on complex tasks. By identifying these limitations, we are able to improve one soft prompting method by controlling compression granularity, achieving up to +23% in downstream performance, +8 BERTScore points in grounding, and 2.7x more entities preserved in compression. Ultimately, we find that the best effectiveness/compression rate trade-off is achieved with soft prompting combined with sequence-level training.The code is available at https://github.com/amazon-science/information-preservation-in-prompt-compression.
翻译:暂无翻译