Causal additive models provide a tractable yet expressive framework for causal discovery in the presence of hidden variables. However, when unobserved backdoor or causal paths exist between two variables, their causal relationship is often unidentifiable under existing theories. We establish sufficient conditions under which causal directions can be identified in many such cases. In particular, we derive conditions that enable identification of the parent-child relationship in a bow, an adjacent pair of observed variables sharing a hidden common parent. This represents a notoriously difficult case in causal discovery, and, to our knowledge, no prior work has established such identifiability in any causal model without imposing assumptions on the hidden variables. Our conditions rely on new characterizations of regression sets and a hybrid approach that combines independence among regression residuals with conditional independencies among observed variables. We further provide a sound and complete algorithm that incorporates these insights, and empirical evaluations demonstrate competitive performance with state-of-the-art methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员