In this work, we present a method for node embedding in temporal graphs. We propose an algorithm that learns the evolution of a temporal graph's nodes and edges over time and incorporates this dynamics in a temporal node embedding framework for different graph prediction tasks. We present a joint loss function that creates a temporal embedding of a node by learning to combine its historical temporal embeddings, such that it optimizes per given task (e.g., link prediction). The algorithm is initialized using static node embeddings, which are then aligned over the representations of a node at different time points, and eventually adapted for the given task in a joint optimization. We evaluate the effectiveness of our approach over a variety of temporal graphs for the two fundamental tasks of temporal link prediction and multi-label node classification, comparing to competitive baselines and algorithmic alternatives. Our algorithm shows performance improvements across many of the datasets and baselines and is found particularly effective for graphs that are less cohesive, with a lower clustering coefficient.
翻译:在此工作中, 我们提出一个在时间图中嵌入节点的方法 。 我们提出一个算法, 来学习时间图节点和边缘随时间变化的演变过程, 并将这种动态纳入不同图形预测任务的时间节点嵌入框架 。 我们提出一个联合损失函数, 通过学习将其历史时间嵌入结合起来, 从而创造节点的暂时嵌入, 这样它就能优化每个特定任务( 如链接预测 ) 。 算法是使用静点嵌入方式初始化的, 静点嵌入方式随后在不同时间点的节点表示中进行对齐, 并最终在联合优化中适应给定的任务 。 我们评估了我们对于时间链接预测和多标签节点分类这两个基本任务的方法的有效性, 与竞争性基线和算法替代方法进行比较。 我们的算法显示许多数据集和基线的性能改进, 并且发现对不那么一致的图表特别有效, 其组合系数较低 。