Research on link prediction in knowledge graphs has mainly focused on static multi-relational data. In this work we consider temporal knowledge graphs where relations between entities may only hold for a time interval or a specific point in time. In line with previous work on static knowledge graphs, we propose to address this problem by learning latent entity and relation type representations. To incorporate temporal information, we utilize recurrent neural networks to learn time-aware representations of relation types which can be used in conjunction with existing latent factorization methods. The proposed approach is shown to be robust to common challenges in real-world KGs: the sparsity and heterogeneity of temporal expressions. Experiments show the benefits of our approach on four temporal KGs. The data sets are available under a permissive BSD-3 license 1.
翻译:知识图中链接预测的研究主要侧重于静态多关系数据。在这项工作中,我们考虑了时间知识图,其中各实体之间的关系只能维持一个时间间隔或特定时间点。根据以往关于静态知识图的工作,我们提议通过学习潜在实体和关系类型表述来解决这一问题。为了纳入时间信息,我们利用经常性神经网络来学习可与现有潜伏系数化方法同时使用的关系类型的时间-觉悟表达方式。我们发现,拟议的方法对于现实世界KGs的共同挑战是强有力的:时间表达方式的孔径和异质性。实验表明我们的方法对四个时间KGs的好处。数据集可在允许的BSD-3许可证中查阅。